Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The need for collaborative software is more significant than ever in our modern world. Especially in large software companies, it becomes imperative to work efficiently with co-workers to complete large projects. Consider that nearly seven percent of Americans between ages six and eleven have been diagnosed with neurodivergency [1]. Some of these individuals will end up becoming software developers. The problem, though, is that many of these students will not have the practice of effectively collaborating while coding. Scratch, one of the most ubiquitous block-based software tools that aims to teach students basic programming practices, does not support multi-user collaboration1. As such, reverse-engineering single-user web programming applications to multi-user applications could help younger students–especially those with neurodivergent social behaviors–learn good collaborative practices early. Moreover, the development of this tool allows a unique case study into the implementation of multi-user features in closed single-user systems and the challenges faced in implementing such a software. In this paper, we demonstrate the process of developing the software that we built for a summer camp related to teaching around 20 neurodivergent high school students programming concepts under the funding of NSF’s Division Of Research On Learning and ITEST. We elaborate on the challenges and potential issues of creating and making such software easily accessible. More specifically, the synchronization problems that arise from turning a closed single-user system into a multi-user system for a neurodivergent programming camp. Additionally, we discuss about the iterative and real-time feedback development of our tool.more » « lessFree, publicly-accessible full text available June 25, 2026
- 
            In this work-in-progress paper we present emergent recruitment issues encountered during an ongoing design-based project with participants from two-year colleges for an NSF-funded scholarship program. Our hope is to connect with researchers who have previously explored similar issues or may be experiencing them in their current work. Student Pathways in Engineering and Computing for Transfer Students (SPECTRA) is an NSF S-STEM program that provides financial assistance to students transferring from the South Carolina Technical College System into Engineering or Computing majors at Clemson University [1]. SPECTRA also assists students by connecting them with peers at the technical colleges who move together through the transfer process to Clemson and are supported by the SPECTRA program until graduation. In addition to exploring the experiences of current SPECTRA participants, we investigate how the project can be scaled to include more students and sustained after NSF support ends. The 2021-2022 academic year is the third of the five-year program, although, given emergent recruitment issues, we foresee application for a no-cost extension. The primary concern is the low number of students currently supported in comparison to our goals, highlighting recruitment for further examination. We planned to support up to twenty students in year 1, 52 students in year 2, 70 students in year 3, but our actual numbers in the first three years are 7, 12, and 28 students. Given this trend, our concern over how we recruit students into SPECTRA is now at the forefront of our work. The program is not reaching those students who are eligible, and low recruitment has limited the quality of research needed to inform the construction of a sustainable program. To explore recruitment, we have added interviews with potential students at the technical colleges. In addition to this interview process, we have reviewed our internal practices, analysed existing public information and social media from similar programs, and reviewed existing literature from related research and practice. We identified aspects that may have impacted our current situation. The first was explicit, being the impact of COVID-19 on our ability to hold in-person recruitment events. Similar to studies that have identified other COVID-19 impacts to two-year institutions such as “retention rates declined the most in the community college sector (-2.1 pp to 51.6%)” [2], “disparities in upward transfer mobility increased during the pandemic year” [3], and community colleges being hit hardest “with a 9.4 percent decline” in enrollment [4], we intend to further clarify the influence of COVID-19 on our context. COVID-19 also played a role with regard to the need for scholarship funds, as one of the technical colleges in our program used federal relief funds to provide free tuition for all students during the 2020-2021 academic year. Another potential impact is the effectiveness of the SPECTRA webpages and other online materials to meet the needs of potential students considering the program. In this work-in-progress paper, we will share how we are addressing recruitment issues and how new interventions are impacting recruitment.more » « less
- 
            In this work-in-progress paper, we present design-based methodological work intended to support implementation of a large-scale, ongoing NSF Scholarships in STEM (S-STEM) project. We have created pilot tools and procedures for data collection and analysis that will supply consistent research throughlines during the project lifespan while also providing iterations of formative feedback about participants’ needs and their experiences in the project. While these tools and procedures have allowed us to analyze pilot data, in each year of the project, participant numbers will continue to grow, placing additional demands on our research team and our chosen methods. Will the designs we have created help us to scale effectively while remaining fidelitous to our project goals? The purpose of the S-STEM project is to connect student pathways at state technical colleges to Engineering and Computer Sciences programs at a Research I university in the southeastern United States. Toward this goal, we are implementing communities of practice and cognitive apprenticeship strategies to support student cohorts and create programming aspects to enhance transfer students’ enculturation to the university, completion of STEM-related degrees, and placement in the industrial workforce. Cohorts begin at the technical colleges, guided by a doctoral student mentor who engages program participants in applied research and shepherds them throughout their transition to the university. Now in the second year of the project, the pilot cohort is studying at the university while new cohorts are engaged at the collaborating technical colleges. Each year, the number of students participating in the five-year implementation will accumulate to a proposed total of over 300 students. Our research team will need to scale our efforts toward project fidelity. Our intent with this work-in-progress paper is to share our current status and invite interested colleagues to provide feedback about our pilot analysis work and our plans for future data. We will introduce the design-based methods that inform both research and development in our project. In particular, we will focus on the applicability of these methods for implementation work and how they can be effectively scaled to large interventions. We will describe observation, interview and focus group, and survey methods, along with how these methods complement academic sources and other student-related data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available